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Received 30 March 1993 

AhslracL The low temperature dynamics of the three-dimensional Ising spin-glass in zero 
field wiih a discrete bond distribution is investigated via MC simulations. The ther- 
moremanent magnetization is found to decay alsebraically and the temperature dependent 
exponents agree very well with the experimentally determined values. The non-equilibrium 
autocorrelation function C(r, 2,) shows a crossover at the waiting (or aging) time t, from 
algebraic quasi-equilibn’um decay for times f a  I, to another, faster algebraic decay for 
I >> tw with an exponent similar to one for the remanent magnetization. 

The measurement of dynamical non-equilibrium quantities in real spin-glasses [I] has 
a long history. The typical experiment that has been conducted many times [2,3~] is 
the following: within a magnetic field the spin-glass (for instance Cu(Mn), Au(Fe), 
Feo.SMno.sTi03, (Fe,Nill_,))~,,P,,B,AI3, Cd,Mn,,-,,Te, etc) is cooled down to tem- 
peratures below the freezing temperature T8 and either immediately or,after a certain 
waiting time t ,  the field is switched off. Then the so-called (thermo)remanent magnetiz- 
ation M,,,(t) is measured as a function of time t. %e asymptotic time dependence of 
this quantity is found to be algebraic well below T, ( T / T ,  gO.98) in the short range 
king spin-glass Feo.sMno.sTi03 [4,5] and in an amorphous metallic spin-glass 
(Fe,Nill-,)),sP,bB6A3 [6]. Furthermore the time-dependence of the remanent mag- 
netization depends on the waiting time t,, a phenomenon called aging [2]. 

Several attempts have been made to explain this behaviour theoretically [7-111 and 
a wide variety of functional forms for the time dependence of the remanent magnetiz; 
ation is found. The problem lies in the fact that starting from a microscopic model or 
model-Hamiltonian one encounters insurmountable difficulties in trying to, solve the 
non-equilibrium dynamics. Therefore additional assumptions have to be made and the 
h a 1  outcome-stretched exponential [7], algebraic [IO, 111 or logarithmic [9] decay- 
depends on them. Even within the mean field approximation it is hard to obtain any 
analytical [12,13] or semi-analytical [I41 results. 

Once a microscopic model for a spin-glass has been formulated, one can in principle 
try to extract its macroscopicbehaviour via Monte Carlo (MC) simulations. In contrast 
to an analytical treatment, where the calculation of dynamical non-equilibrium quan- 
tities within the spin-glass phase (instead of those characterizing equilibrium, see [lS]) 
is even more complicated, MC simulaton can be done with less effort for certain 

i Present address: Institut fiir Theoretische Physik, Universitit N K h ,  5000 KWn 41, Federal Republic of 
Germany. 
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non-equilibrium situations, since equilibration times reach astronomical values in the 
case of spin-glasses [16-181. The remanent magnetization with zero waiting time has 
been investigated numerically for the mean field version of a spin-glass model [9,19] 
and for the three-dimensional EA (Edwards-Anderson) model only right at the critical 
temperature [20]. Quite recently attempts have been made to investigate the whole 
temperatwe range below T8 numerically [21, 221. However, a systematic MC study of 
non-equilibrium correlations and aging phenomena within the frozen phase (T< T,) 
of the three-dimensional EA spin-glass model has not been made up to now. The results 
of such an investigation, its theoretical implications and comparison with experiments 
will be reported in this letter. 

The system under consideration is the three-dimensional king spin-glass with 
nearest neighbour interactions and a discrete bond distribution. Its Hamiltonian is 

where the spins q = * 1 occupy the sites of a L x L x L simple cubic lattice with periodic 
boundary conditions and the random nearest neighbour interactions J, take on the 
values +1  or -1 with probability $. We consider single spin-Rip dynamics and used a 
special, very fast implementation of the Metropolis algorithm on a Cray YMP (see 
[23] for details). The simulations were done in the frozen phase, that means at 
temperatures below T,= 1.175*0.025 (see [16-181). All measured quantities are 
averaged over at least 128 samples (smaller system sizes were averaged over up to 1280 
samples). The system size was increased until no further size dependence of the results 
were observed within the simulation time (t=Z lo6), which is measured in MC sweeps 
through the whole lattice. It turns out that L=32 is large enough for this time range 
(see [181). 

The system was prepared in a fully magnetized initial conliguration and then the 
simulation was run for a time t ,  (waiting time) and then the spin configuration u(tw) 
was stored. From now on after each MC step (data were then averaged over appropriate 
time intervals, see [18]) the following correlation function was measured: 

where (. . .) means a thermal average (i.e. an average over different realizations of the 
thermal noise, but the same initial configuration) and the bar means an average over 
different realizations of the bond-disorder. The quantity C(t, 0) corresponds to the 
remaining magnetization of the system,after a time 1. 

M A t )  = C(40) .  (3) 
This quantity is directly related to the experimentally determined thermoremanent 
magnetization with zero waiting time (i.e. without aging) and nearly saturated initial 
magnetization. The result for the remanent magnetization Mc.,(t) is shown in 
figure 1 within a log-log plot. Its decay clearly obeys a power law for large times and 
temperatures in the range 1.12 T30.5. The exponent h(T)  for the fit 

M,,(t)oc P-1 (t31OZ) (4) 
is plotted in figure 2, upper curve. It starts at h=0.36*0.01 for T =  1.1 (and can be 
extrapolated via the fit indicated in figure 2 to 0.39 IO.0 1 for T = T,, which was already 
found in [ZO]) and decreases monotonically with temperature. For the short range 
king spin-glass Feo.sMno.5TiOs and for certain amorphous metallic spin-glasses not 
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Figure 1. The remanent magnetization MEm(t) versus the time t in a log-log plot for 
varying temperatures. From top to bottom we have T =  0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and 
1.1. the system sire is L=32 and the data are averaged over 128 samples. The error bars 
are of the size of the symbols for M,,SO.Ol and much smaller for larger M,,. 
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Figure 2. Upper curve: The exponent A(T) for the remanent magnetization (3) versus 
temperature. The points represented by diamonds (0, plus errorbars) are those extracted 
from figure 1 and the full curve is a least square fit to a quadratic polynomial as a guideline 
to the eye. Lowerpoints:Thenon-equilibriumexponent h(T, 1,) (see equation ( 5 ) )  extracted 
from the long-time behavour (t>> r,) of the non-equilibrium mrrelation function C(f, f,) 
(see figure 3) for fixed values of 1, versus the temperature T. From top to bottom we have: 
(A) tw = 10, (U) t,= 100 and (0) 1, = 1000. The errorbars are indicated. 
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only the same algebraic decay of the remanent magnetization has been observed, but 
also the shape of the functional temperature dependence of the exponent A( T )  and 
even its numerical values are in excellent agreement: from figure 4(b) in [6] one may 
for instance read o f f  A(T,) ~0.38 and A(0.5T,) ~ 0 . 1 2 ,  concurring within the errorbars 
to the corresponding data plotted in figure 2. 

It was argued [9 ]  that the decay of &fmm(t) should be logarithmic (i.e. M,.,(t)o~ 
(In t)-"/") below T,, but afit of the data in figure 1 for T >  0.5 does not yield acceptable 
results over the range of the observation time. We want to focus some attention to the 
T = 0.4 curve: It bends upward in the log-log plot for f > lo4, which could indicate 
the onset of a slower than algebraic decay for temperatures smaller than 0.5, logarithmic 
for instance. 

Another indication that something new happens at lower temperatures can be 
obtained by looking at the short-time behaviour of M,,,( I): At T= 0.5 a plateau begins 
to develop for t < lo2, which can clearly be seen for T= 0.4 and becomes even more 
pronounced and wider for even smaller temperatures. It can be exactly reproduced in 
shape and location for smaller and larger sizes and number of samples, which means 
that it is a physical effect and not only a fluctuation. A possible interpretation might 
be, that the system gets trapped in metastable states, whose lifetime grows with decreas- 
ing temperatures. 
' 

Next we turn our attention to the correlation function C( t ,  t,) with t,=lO" 
(a = 1,. . . , 5 ) .  In contrast to M,,(t) the correlation function C(t, tw) for tw# 0 is not 
directly related to the thermoremanent magnetization M(t ,  t,) at time t + t ,  in a 
temperature-quench experiment, where the field H is switched off at time t ,  after the 
quench (see e.g. [24]). In equilibrium (t,+m)C(t,m) is related to the relaxation 
function R(t, CO) = M(t ,  m)/H via the fluctuation dissipation theorem (FDT) R(t ,  a) = 
C(t,  m)/k,T. However, in a non-equilibrium situation, like the one considered here, 
slight differences between them exist [21,25] (e.g.-in the location of the maximum 
relaxation rate). The magnetization that is induced by a small external field (Hcc 1) 
for model (1) is rather small, therefore the functional form of M(t ,  t,) is harder to 
determine accurately via Mc-simulations. This is the reason why in this letter the focus 
is on C(t, t,). 

A typical set of data for a particular temperature ( T  = 0.8) is shown in figure 3 in 
a log-log plot. One observes a crossover from a slow algebraic decay for IC< E, to a 
faster algebraic decay for t >> t,. The crossover time is simply defined as the intersection 
of the two straight line fits for short- and long-time behaviour in the log-log plot. For 
the long-time behaviour the fit to 

C(t, t,)oc t-*(T.'J f >> t, ( 5 )  

yields a set of exponents that is depicted in figure 2. For increasing t ,  the exponent 
A( T, t,) decreases only slightly and the waiting time dependence becomes weaker for 
lower temperatures. By looking at, figure 3 one observes that it is difficult to extract 
A( T, t,) for f, = lo4 and lo5 since there are only 2 or 1 decades left to fit the exponent- 
therefore they are not shown in figure 2. The exponent describing the short-time ( t  << t,) 
behaviour of C(t, t,), 

C( t, t,) oC t -X(T)  t<c f, (6) 
which is depicted in figure 4, is independent of the waiting time t , .  Since the system 
was able to equilibrate over a time t,, all processes occurring on timescales smaller 
than f ,  have the characteristics of equilibrium dynamics and therefore the exponent 



Letter to the Editor L619 

,~ 0 

0.1 

10 . ,100 1000 10000 ' 100000 ~i.+OS 
t 

1 

Figure 3. The averaged non-equilibrium spiti,autocorrelation function C(t, t,) of equation 
(2) for h e d  values aft, versus time f on a double logarithmic timescale. The temperature 
is fixed to be 7=0.8 and from'top to bottom we have t,= IO', lo", IO', IO2 and 10. The 
system iize is L=32 and the data are averaged over 128 samples. The size of the errorbars 
is only a fraction of the size of the symboli. 

, . I  , .  

x( T) is identical to that describing the decay of the equilibrium autocorrelation function 
q ( t )  =lim,w+a C( t ,  tw). The latter was investigated in [18] and the exponents that are 
reported there for T>0.7Tc agree with the values shown in figure 4. They also agree 
with those determined expen,mentally [5] in the short range king spin-glass 

" .~ 
0.2 0.4 0.6 0.8 1 1.2 

T 
Figure4. The equilibrium exponent x ( T )  for the equilibrium autocorrelation function q ( t )  
extracted from theshort-time behaviour (I c: lw) ofthenon-equilibrium correlation function 
C(t,  t,) (see equation (6)) versus the temperature 7. The errorbars are smaller than the 
symbols, as indicated. For TSO.8 the data are fitted to a straight line, which shows that 
at approximately 7=0.3 the exponent x ( T )  vanishes. 



L620 Letter to the Editor 

Fe,,Mno.STiO, via the above the mentioned relaxation function R(t ,  t,) = M ( t ,  t w ) / f f  
for t<< I, (note that in this quasi-equilibrium regime C(t, t,) and R( t ,  t,) are related 
via the FDT [21,25], yielding the same exponents for both): close to T,(T/T, = 1.029) 
they obtain x = 0.07. Furthermore there seems to be a temperature at about 0.3, where 
x( T) becomes zero, which could be another indication for the above mentioned onset 
of a logarithmic decay of the correlation functionst. 

Although the decay of the non-equilibrium correlations in the temperature range 
0.5 < T S 1.1 is algebraic rather than logarithmic as predicted by the droplet picture 
proposed in [9], this picture might not be inappropriate. Let us assume the following 
scaling law for the dependence of the free energy barriers B on a length scale L of 
the regions to be relaxed: B = A  In L instead of BCC L' as in [9]. Then one ends up 
with an algebraic decay of, e.g., the remanent magnetization by observing (see [9]) 
that the typical length scale of domains R, now grows with time according to A In R, - 
Tln t, which means R,oCt"A'T', leading to equations (3)-(6) .  

In the context of the phenomenological model for the dynamics and aging in 
disordered systems developed in [ 111, the algebraic decay of correlations found so far 
implies that the probability distribution of free energy barriers is exponential in the 
temperature range of 0.5s  TS. l .1  for the system under consideration. Furthermore 
we would like to mention that a fit to the functional form for the short time behaviour 
(I<< t,)C(t, tw)--l-a(t/t,)Y'proposed in [11] works also quite'well for our data, 
although not as convincingly as equation (6). 

Guided by equations (4) and (5) we tried to put our results into the following 
scaling form: 

C(t, t,)= C$-"'T'@,(t/t,) (7) 

where @&) = 1 for y = O  and @r(y)oCy"'T'-"'r) fory+m,The form (7) has recently 
been used [27] successfully to extract the critical dynamical exponent z from the 
non-equilibrium correlation function (2)  via finite size scaling, where the waiting time 
t ,  has been replaced by the relaxation time 7oC L' in the critical region. Fortemperatures 
below T=0.8 equation (7) yields an acceptable fit (which can already be deduced 
from the negligible waiting time dependence of the exponents A (  T, fw) for T S  0.7, see 
figure 2). 

Concluding, we have reported new results of numerical non-equilibrium simulations 
that show an excellent concurrence with experiments on the short range king spin-glass 
Feo.5Mno.sTi03 and on amorphous metallic spin-glasses: not only a single exponent 
but a whole continuum of (temperatnre dependent) exponents for the remanent 
magnetization are found to agree within the numerical errors. Although the values for 
the exponents extracted from experiments might vary somewhat depending on the 
microscopic details (range of interactions, spin-type) the main features of the relaxation 
and the dynamics of many different three-dimensional spin-glasses are very similar 
and the functional forms of the remanent magnetization decay should be the same for 
different systems [28]. 

Furthermore we have shown that aging phenomena in the spin-glass model under 
consideration can be observed via the measurement of a particular correlation function 
and that its non-equilibrium dynamics is indeed governed by its equilibrium characteris- 
tics for timescales smaller than the imposed waiting (or aging) time. This gives an 

t According to [XI, also the equilibrium autocomelation function q(z) should decay logarithmically 
q(t)cc(lfl  I)+'+. 
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interesting new perspective (see also [27,29]) to extract equilibrium quantities, which 
are hard to obtain via MC simulations within the spin-glass phase. Finally, by observing 
plateaus in the short time behaviour and slowing down of the algebraic decay of the 
remanent magnetization, we revealed a dynamical scenario at very low temperatures 
that is not yet fully understood. 

The author would like to thank A P Young for many extremely valuable discussions. 
He is grateful to J 0 Anderson, D Belanger, J P Bouchaud and P Nordblad for various 
comments, hints, suggestions and explanations. The simulations were performed on 
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CPU-time. Financial support from the DFG (Deutsche Forschungsgemeinschaft) is 
also acknowledged. 
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